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ABSTRACT

We present here a software architecture and an API that enables
application developer to explore and build power / performance
tradeoffs in the application software and enable the operating sys-
tem to make appropriate hardware adjustments guided by applica-
tion and system dynamic power management policies. We demon-
strate the effectiveness of our implementation by implementing
power aware scheduling schemes within eCos embedded real time
operating system using real tasksets. We also present a battery
driven adaptation scheme implemented in a wavelet based image
compression application. The resuls show the usefulness of PASA
(Power Aware Software Architecture) in power / performance trade-
offs and in comparison of power management policies in a real
system implementation.

1. INTRODUCTION

Fueled by rapid advances in system integration and wireless com-
munication technology, embedded systems are increasingly be-
coming networked. These systems often involve integration of
high-performance computing and wireless communication capa-
bilities, many of which operate under real-time constraints. The
complexity of these systems together with the need for high- flex-
ibility, and aggressive time-to-market schedules have resulted in
the wide use of programmable system solutions. Software support
for these systems usually takes the form of a real-time operating
system (RTOS), device drivers, and runtime libraries.

Wireless embedded systems are often battery driven and, as a
consequence, have to be designed and operated in a highly energy-
efficient manner to maximize the battery lifetime. The pressing
need for reduced-energy solutions has spurred the research and
development of several low-power circuit design methodologies
[3, 16]. While using low-power hardware circuits is necessary, it
alone is not sufficient, especially since the increasing levels of sys-
tem integration continuously worsen the energy problem. System
lifetime can only be maximized by managing the various system
resources in a power-aware manner, thus empowering the system
with the ability to dynamically adjust its operating point in the
performance-energy-fidelity tradeoff space. To address this issue,
Dynamic Power Management (DPM) techniques have been inves-
tigated (see for example, [2]). A commonly used DPM scheme is
to put the idle system components in a shutdown or into a low-
power state. An alternative – and more efficient when applicable
– technique is Dynamic Voltage Scaling (DVS), where the voltage
and operating frequency of the processor are changed dynamically
during runtime to just meet the performance requirement.

In this context, an RTOS provides a number of services to an

embedded system application. It manages the creation, destruc-
tion, and scheduling of tasks, as well as the communication be-
tween tasks. It is responsible for all resource allocation and man-
agement decisions, and serves as an interface between an applica-
tion and the underlying hardware platform. The RTOS has global
information about the performance requirements and workload of
all the applications, and can directly control the underlying hard-
ware, tuning it to meet specific system requirements. These char-
acteristics make the RTOS an ideal place to implement system-
level power management policies. However, effective DPM cannot
be done by the OS alone. It requires participation by the applica-
tion software in ensuring that right power-performance tradeoffs
are made in the context of the application. For this, we need a
software interface that facilitates a continuous dialogue between
the OS and the application. This dialogue enables the OS to serve
as a broker between application-level functionality and parameter
choices and the hardware capabilities for changing performance
and power consumption.

1.1. Paper Overview and Contributions

This paper presents an structured and layered software architec-
ture for power-aware wireless and portable embedded systems.
The architecture consists of an RTOS kernel, and a set of stan-
dard software interfaces that enable easy exchange of timing and
power information between the underlying hardware platform, the
RTOS, and the application. It provides a programming interface
(named PASA for Power-Aware Software Architecture) that can
be used to efficiently incorporate system power management poli-
cies into the RTOS. To demonstrate the impact of PASA, we focus
our attention on the task scheduling process in an RTOS. We use
PASA to incorporate (and compare) different DPM / DVS tech-
niques (from a simple shutdown based scheme to an advanced
DVS scheme that enables adaptive power-fidelity tradeoffs) into
the RedHat eCos [21] operating system running on a complete
variable-voltage system based on the Intel XScale micro-architecture.
We also collected power measurement results that show the effi-
ciency of the different schemes implemented. It is important to
note that this paper is not proposing nor presenting any innova-
tive algorithm for power management at the OS level. Our chief
contribution is a software and hardware platform that provides the
capability to make power-performance tradeoffs and to assess ef-
fectiveness of DPM.

2. RELATED WORK

Many papers devising DVS techniques have been published in the
last few years. Few of them, however, have presented real imple-



mentation of the algorithms on a real embedded systems platform
running on a RTOS. Pillai and Shin [20] presented different algo-
rithms for voltage/frequency scaling as well as simulation results
and also the results on a implementation platform. The techniques
were developed with embedded systems in mind but the imple-
mentation was realized on a laptop computer running Linux op-
erating system, which is not a typical embedded system platform.
The operating system kernel was modified by means of loadable
modules in order to accomplish the implementation of the DVS
techniques. The results and implementation details are presented
in the referenced paper.

Flinn and Satyanarayana [6] developed a platform for energy-
driven application adaptation in mobile devices. They showed that
a constant and collaborative dialogue between operating systems
and applications enables the adaptation of the latter based on the
energy available and the battery life time duration required. By
monitoring the energy supply and demand their platform is able to
select the correct tradeoff between energy conservation and appli-
cation quality. The techniques used are mostly based on lowering
the fidelity of the application in order to save energy. Hardware
based techniques such as turning off the display, hard disk and
waveLAN card were also used. All the experiments were executed
running Linux operating system on Pentium based laptops. No
DVS schemes were implemented.

The importance of a well-structured software architecture for
energy-efficiency in mobile systems is discussed in [24]. As a first
step to analyze and improve the energy impact of various OS de-
cisions, researchers have attempted to characterize the power con-
sumption of embedded RTOSs [4, 1]. There exists a multitude
of work on OS-directed dynamic power management. Shutdown
based power management schemes [2] attempt to optimize the sys-
tem’s transition policy between several states, each of which is
characterized by a performance and power consumption level.

An early work on software architecture to enable power man-
agement at OS level include BIOS-based Advanced Power Man-
agement (APM [11]). The principal limitation of APM is that the
OS has no knowledge of the APM actions. Its follow on, the Ad-
vanced Configuration and Power Management (ACPI [12]) allows
OS- directed power management by defining hardware registers
and BIOS interfaces (table, control methods). ACPI primarily en-
ables use of Intel-specific hardware mechanisms for power reduc-
tion. It does not provide any support for real time contraints. More
importantly, it does not provide any mechanisms for the applica-
tion software that allow it to use the operating system power reduc-
tion services or allow the OS to take advantadge of the application
knowledge.

Variable voltage schemes for energy-efficient task scheduling
have mostly targetted either workstation-like environments where
latency is not an issue, and average throughput is the metric of per-
formance [25, 7], or hard real-time systems, where a single timing
violation may be catastrophic to system functionality [13, 9, 22,
14]. It is only recently that a new class of power-aware scheduling
schemes has emerged that targets soft-real time systems, and per-
mits a few deadlines to be missed [15, ?], thereby adding another
degree of freedom, namely system fidelity or quality of computa-
tion, to the design and operation of these systems. This is par-
ticularly important for wireless systems where missed deadlines
and packet loss over the wireless link can be treated in a similar
fashion providing a level of flexibility to enable aggressive power
management.

Finally from the experimentation and implementation point of

view, Farkas et al [5] presented energy/power measurements on
the Itsy pocket PC platform. They used a DAQ board to collect the
data and characterized power consumption of the platform running
different benchmarks. They characterized power consumption of
the processor running at three different frequencies and two dif-
ferent voltages. This work presents power consumption data for
different subsystems without addressing the issue of a software ar-
chitecture or how hardware active frequency/voltage scaling takes
place.

3. SOFTWARE ARCHITECTURE REQUIREMENTS

In seeking to develop an architecture for the system and applica-
tion software we briefly examine the requirements that such an ar-
chitecture must satisfy. There are, of course, requirements related
to the real-time nature of many embedded applications, many of
which are satisfied by a range of available RTOSs. For instance,
the OS should be able to monitor the real time parameters of task
instances (e.g., deadlines). Further, and not usually present by
most of the RTOS’s the OS must also be able to monitor the system
workload and to predict future execution times based on previous
ones. The OS should also be able to manage the available hardware
knobs for speed-power trade-off, adjusting them according to the
system workload. This includes setting processor frequency and
voltage, and setting the processor into low power states by means
of simple and structured interface.

For efficient system-level power management, it is important
that an application is able to monitor and control power related
hardware “knobs” (such as processor voltage and frequency) as
well as control and take advantadge of power aware operating sys-
tem services (such as task scheduling). There is a need for mech-
anisms in the system software that allow efficient communication
of energy, performance and accuracy tradeoffs for a given applica-
tion. The electrical “knobs” must be made available to the operat-
ing system to enable the OS system writer to introduce power and
energy awareness into traditional OS services.

Making an OS or runtime system aware of the system power
and energy constraints is not sufficient in providing guarantees on
how an application will perform in a power/energy constrained en-
vironment. The operating system services must also be available
to the application programmer so that application can make use
of this information in determination of power/energy dependent
functionality and performance characteristics. Specifically, facili-
ties are needed for an application to create and instantiate a task,
taking into consideration the task timing parameters (period, dead-
line and execution time). The application should also be able to
inform the operating system about the start and end of its compu-
tation and also about the expected remaining time of a given task
instance (helping the OS to get a picture of the system workload).

While many dynamic power management strategies are spe-
cific to the underlying hardware and software, the application re-
quirements for functionality and performance delivered under en-
ergy constraints can be specified independent of the platform be-
ing used. Given the diversity of hardware and software platforms
used in portable, embedded and/or real-time systems, it is criti-
cal that power, energy and timing information are communicated
through well-defined interfaces to ensure application portability
across platforms. More concretely, to make the power manage-
ment related software layers level operating system independent,
all system calls to the native operating system should be done by
means of a portable operating system standard interface such as



POSIX.

4. PASA ARCHITECTURE

As mentioned earlier, We view the notion of power awareness in
the application and OS as a capability that enables a continuous di-
alogue between the application, the OS, and the underlying hard-
ware. This dialogue establishes the functionality and performance
expectations (or even contracts, as in real-time sense) within the
available energy constraints. We describe here our implementa-
tion of a specific service, namely the task scheduler, in PASA that
makes it power aware. PASA is composed of two software layers
and the RTOS kernel. One layer interfaces applications with op-
erating system and the other layer makes power related hardware
“knobs” available to the operating system. Both layers are con-
nected by means of corresponding power aware operating system
services as shown in Figure 1. At the topmost level, embedded
applications call the API level interface functions to make use of
a range of services that ultimately makes the application energy
efficient in the context of its specific functionality. The API level
is separated into two sub-layers. PA-API layer provides all the
functions available to the applications, while the other layer pro-
vides access to operating system services and power aware mod-
ified operating system services (PA OS Services). Active entities
that are not implemented within the RTOS kernel should also be
implemented at this level (threads created with the sole purpose of
assisting the power management of an operating system service,
such as a thread responsible for killing threads whose deadlines
were missed). We call this layer the power aware operating system
layer (PA-OSL).

To interface the modified operating system level and the under-
lying hardware level, we define a power aware hardware abstrac-
tion layer (PA-HAL). The PA-HAL gives the access to the power
related hardware “knobs” in a way that makes it independent of
the hardware.
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(DPM Manager
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Figure 1. Power Aware Software Architecture

Table 1 lists the functions relevant to the implementation of
power aware scheduling techniques. At the PA-API layer there

are functions to create types (informing the real time related pa-
rameters) and instances of tasks, to notify start and end of tasks
(needed by the OS in order to detect whether the task execution
is over and the deadline of a task has been met), and to either in-
form the application about the execution time predicted by the OS
or tell the OS about the execution time prediction estimated by
the application ( which can be based on application specific pa-
rameters). At the PA-OSL layer there are functions to manipulate
information related to the power aware scheduling schemes that
are maintained within the kernel (such as the type table in the case
of the scheduler), the thread responsible for killing threads whose
deadlines were missed (assuming that the threads whose deadlines
were missed are no longer useful). The alarm handler notifies the
killer thread, which in turn kills the thread and re-creates it. The
overhead of having an extra thread is minimum since the killer
thread is constantly blocked unless a request to kill another thread
is received. When it happens the killer thread wakes up and fin-
ishes the execution of the proper thread. At the PA-HAL layer
functions to manipulate processor frequency and voltage levels and
low power states are present. These are called by the RTOS sched-
uler when slowing down the processor or shutting it down. For
processor frequency and voltage scaling, different platforms have
different precautions that have to be taken care of before doing
the scaling. These precautions might have to be done before the
scaling, after it or both before and after. For these the functions
pahal_dvs_pre_set_frequency_and_voltage and
pahal_dvs_post_set_frequency_and_voltage are pro-
vided and must be implemented by the OS programmer according
to the platform. And finally functions to poll the status of battery
based platforms are also important in order to enhance their life-
time.

Layer Functions/Threads

PA-API paapi dvs create thread type()
paapi dvs create thread instance()

paapi dvs app started()
paapi dvs get time prediction()
paapi dvs set time prediction()

paapi dvs app done()
paapi dvs set adaptive param()

paapi dvs set policy()
paapi dpm register device()

PA-OSL paosl dvs create task type entry()
paosl dvs create task instance entry()

paosl dvs killer thread()
paosl dvs killer thread alarm handler()

paosl dpm register device()
paosl dpm deamon()

PA-HAL pahal dvs initialize processor pm()
pahal dvs get frequency levels info()

pahal dvs get current frequency()
pahal dvs set frequency and voltage()

pahal dvs pre set frequency and voltage()
pahal dvs post set frequency and voltage()

pahal dvs get lowpower states info()
pahal dvs set lowpower state()

pahal dpm device check activity()
pahal dpm device pre switch state()

pahal dpm device switch state()
pahal dpm device post switch state()

pahal dpm device get info()
pahal dpm device get curr state()

pahal battery get info()

Table 1. PASA relevant functions

Figure 2 shows an example on how the PA-API functions are
used in a MPEG decoder source code when creating threads using
PA-API functions. A thread is created specifying that the deadline



void main()
{

mpeg_decoding_t =
paapi_dvs_create_thread_type(100,30,100);

paapi_dvs_create_thread_instance(
mpeg_decoding_t, mpeg_decode_thread);

}
...
void mpeg_decode_thread()
{

for (;;) {
paapi_dvs_app_started();
/* original code */
mpeg_frame_decode()
paapi_dvs_app_done();

}
}

Figure 2. Power aware source code example for a MPEG
decoder

and period are 100 and the worst case execution time is 30 (assum-
ing it was profiled and therefore known ahead of time. The thread
is instantiated and access to the power-aware functionality con-
tracts is enabled and terminated by the functions paapi_dvs_app
_started() and paapi_dvs_app_done() respectively. These
functions delimit the work done by the threads which is encapsu-
lated in one single function in this example.

There are also function meant to set the DVS scheme or the
DVS scheme characteristics at the run-time. paapi_dvs_set_
policy() sets the DVS policy to be used before the system ini-
tialization. paapi_dvs_set_adaptive_param() config-
ures the parameters of the adaptive scheme that will be described
in section 5.2. These functions, along with the function with the
DPM prefix have not been fully implemented yet. paapi_dpm_
register_device() register the device to be power managed.
The function tells which device to be managed and which policy
should be used to managed the device. Function paosl_dpm_
register_device() access the device table within the kernel
and updates it information. Function paosl_dpm_deamon() is
responsible for monitoring idleness of a certain device and based
on how long it has been idle switch it to low power modes. The
policies on how to decide which state to switch to and after how
long are out of the scope of this paper.

The function pahal_dpm_device_check_activity()
tells for how long the device has been idle. The implementa-
tion of this function may rely on information taken from the de-
vice driver which provides access to the device. The functions
pahal_dpm_device_pre_switch_state(), pahal_dpm
_device_switch_state() and pahal_dpm_device_post
_switch_state() are responsible for switching the device to
the state passed in as parameter. The last two functionspahal_dpm
_device_get_info() and pahal_dpm_device_get_curr
_state() just provide information about the device and its cur-
rent state.

5. PASA IMPLEMENTATION

The PASA software architecture presented above has been incor-
porated in the eCos operating system 1. We ported eCos to an In-

1The source code for PASA implementation can be downloaded from
http://www.ics.uci.edu/ cpereira/pads

tel XScale processor based platform called 80200 Intel Evaluation
Board (80200 Board for short) [10].

The XScale platform supports nine frequency levels ranging
from 200MHZ to 733Mhz, even though only seven of them are
used in the 80200 board due to its own limitations. The proces-
sor can also be put on three different low-power modes: IDLE,
DROWSY and SLEEP. The SLEEP state is the most power sav-
ing one but requires a processor reset in order to return it to active
mode. The idle state, on the other hand, is the least power saving
but requires a simple external interrupt to wake the processor up.
We use only IDLE power down mode in our experiments due to its
simple implementation.

As is the case with most RTOSs, eCos requires a periodic in-
terrupt to keep track of the internal operating system tick, responsi-
ble for the timing notion within the system. In the 80200 board the
only source of such interrupt is the internal XScale performance
counter interrupt. In our case, this turned out to be a problem be-
cause the interrupt is internal to the processor. Therefore it cannot
wake it up from one of the low power modes. Instead, we use a
source of external interrupts to awaken the processor. The external
interrupt is connected into the interrupt pin of the processor and
the interrupts are generated from an external Altera FPGA board
name UP1 (University Program 1). The relationship among the
80200 board, the FPGA board and the host-PC is depicted in Fig-
ure 3 (See a picture of the hardware setup in Figure 5). The Maxim
board shown in the lower left part is a wire-wrapped board that is
directly responsible for the dynamic voltage scaling of the XScale
platform.

Board
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InterruptsIntel
80200

PC

Host

Processor
Supply Voltage

Voltage Value

Maxim
Board

Scaling
Voltage

 Altera FPGA
Interrupt Ack

Serial Interface to 80200 Board

Figure 3. Hardware Architecture

5.1. Voltage Scaling

The hardware platform for implementing dynamic voltage scaling
(voltage scaling at runtime) consists of a Maxim 1855 evaluation
board, and an interface circuitry made using a PLD. Whenever a
voltage change of the processor is required, the processor sends
a byte through the peripheral bus of the 80200 board to interface
circuitry which basically acts as an addressable latch. The outputs
of this latch are connected to the digital inputs of the Maxim vari-
able supply board. These inputs select the output supply voltage
of the Maxim board and the processor analog and core supplies
are fed from this supply voltage. For the experiments, the system
was configured to run at supply voltages from 1.0V to 1.5V and
frequencies from 333 MHz to 733 MHz according to the Table
2. The frequency is changed using XScale internal registers. The
supply voltage from the Maxim board can vary at steps of 0.05V.



Processor Frequency (Mhz) Voltage Supply Level
733 1.5
666 1.4
600 1.3
533 1.25
466 1.2
400 1.1
333 1.0

Table 2. Frequencies and corresponding voltage levels for
the Intel Xscale processor used in our implementation

In order to prove the utility of our software architecture, we
implemented different power management algorithms using PASA.
In the sequel we describe opportunities during task scheduling to
both slowdown and shutdown the processor.

5.2. Power Aware Scheduling Algorithms

It has been observed in many systems that, during runtime, the pro-
cessor utilization factor is often far lower than 100%, resulting in
long idle intervals. This inherent slack can be exploited for DPM
by either shutting down the processor, or through the use of pro-
cessor slowdown and DVS. The extent of slowdown is limited by
the schedulability of the task set at the reduced speed, since exces-
sive slowdown may cause deadline violations. A second opportu-
nity for DPM arises due to the time-varying nature of the system
workload. Performance analysis studies have shown that for typ-
ical embedded system applications (e.g., audio and video encod-
ing/decoding, encryption/decryption etc.), the instance to instance
task execution time varies significantly and is often far lower than
the worst case execution time (WCET) [18], which results in addi-
tional slack being created in the task schedule. Since task instance
execution times are not known at design time, to exploit this obser-
vation, the power management policy has to be dynamic in nature.
System shutdown. The most obvious way of exploiting idle in-
tervals in the schedule is to shutdown the processor. Modern em-
bedded processors offer multiple low-power states, corresponding
to varying degrees of system shutdown. Most shutdown based
DPM policies are ether predictive [23], or stochastic in nature.
Several techniques for DPM policy optimization have also been
proposed [2].
Static voltage and frequency scheduling. Quite often, in order
to reduce the complexity of implementation, power management
policies are static in nature. Note that static in the context of such
a DVS policy refers to the fact that the voltage and frequency set-
tings of the processor are determined offline at design time. The
settings can vary from task to task, which will require the proces-
sor voltage and frequency to be changed dynamically during run-
time. The main advantage of a static power management policy is
that it is simpler than a dynamic policy. However, the downside is
that such a policy cannot exploit DPM opportunities that arise dy-
namically, during system operation. We have implemented a static
DVS technique described in [?]. The objective of the algorithm
is to determine a slowdown factor for every task such that energy
consumption is minimized while still guaranteeing the schedula-
bility of the task set. The details on how to calculated the static
slow down frequency factors are presented in details in Gruian’s
work [8].

The response time of a task instance is defined as the amount
of time needed for the task instance to finish execution, from the
instant at which it arrived in the system. The worst case response

time (WCRT), as the name indicates, is the maximum possible
response time that a task instance can have. For a conventional
fixed speed system, the WCRT of a task under the RM scheduling
scheme is given by smallest solution of the equation [19]:

Ri Ci
j hp i

Ri

Tj
C j (1)

where R is the response time, T the task period, C the task
execution time and hp i denotes all the tasks with priority higher
than i.

The summation term on the right-hand-side of the equation
represents the total interference that an instance of task i sees from
higher priority tasks during its execution. If the WCET of the task
is less than its deadline Di, the task is guaranteed to be schedulable.

A greedy, iterative technique is used to solve this optimiza-
tion problem. The scheme is enhanced with dynamic components,
which are described next.
Proactive DVS scheme for power-fidelity tradeoff. In [?] the
authors observe that even though task instance execution times
vary significantly, they depend on data values that are obtained
from physical real-world signals (e.g., audio or video streams), and
hence are likely to have some temporal correlation between them.
This temporal correlation can be exploited to proactively manage
processing resources by predicting the execution times of individ-
ual task instances based on the past history of execution times, and
setting the processor speed and voltage accordingly. Several pre-
diction models can be used, such as simple average, exponential
average, least mean square, etc. While the use of more sophis-
ticated models yields better prediction accuracy, it also places a
higher computational burden on the scheduler, which is undesir-
able. As in [?], we use a simple average model that is computa-
tionally light-weight and reasonably effective.
Adaptive speed setting policy. As in any predictive policy, mis-
predictions do occur, which lead to task deadline misses. Wireless
embedded systems invariably have some communication noise (in
the form of data losses and packet errors), and are designed to be
tolerant to these channel impairments. The result of a few task
deadline misses is no different from noise, and only leads to a
slight drop in system fidelity. To keep the system fidelity under
specified limits, an adaptive feedback mechanism was introduced
into the prediction process. The recent deadline miss history is
monitored, and if the number of deadline misses is found to be
increasing, the prediction is made more conservative, reducing
the probability of further deadline misses. Similarly, a decreas-
ing deadline miss history results in more aggressive prediction to
reduce energy consumption. The prediction scheme thus becomes
adaptive to a recent history of missed deadlines, resulting in an
adaptive power-fidelity tradeoff which can be fine tuned to suit ap-
plication needs.

Using this scheme, we keep slowing down the processor by a
factor S when less than T deadlines are being missed in the last W
threads executions. This process is repeated until the total slow
down factor reaches a lower bound M. When T deadlines are
missed in the previous window W of tasks executions, the pro-
cessor is speeded up by factor I.

6. EXPERIMENTS AND RESULTS

We executed four different DVS algorithms using the software and
hardware platforms previously described. The first is a simple



“shutdown when idle” scheme. The second applies static slow-
down factors and shutdown. The third applies shutdown, static and
dynamic slowdow factors, the latter based on average predictions.
Finally the fourth scheme combines shutdown, static and dynamic
slowdown factors, and in addition a deadline miss driven adaptive
factor that works as described earlier. For the adaptive scheme we
used T 2, W 10, I 0 1 and S 0 05. The values for M varied
from 1 0 to 0 75. The analysis for selectin the best configuration of
these numbers is out of the scope for this paper. Our goal here is to
show the effectiveness of PASA in implementing and comparing
different schemes configuration on a real system implementation.

For our prototype system, we used three different real appli-
cations running concurrently. The applications are an MPEG2 de-
coder, an ADPCM (Adaptive Differential Pulse Code Modulation)
speech enconding and a floating point FFT algoritm. These appli-
cations are running concurrently. Each application is executed by
an eCos thread under rate-monotonic scheduling. The periods are
chosen carefully so that the task set is schedulable. We tried differ-
ent schedulable periods for each task in order to demonstrate how
it affects the power consumption on the system. For scheduling the
task according to the RMS criteria, we had to profile the execution
time of each application for different input data in order to collect
the worst case execution times (WCET). For the MPEG2, differ-
ent files were decompressed and for each one of them the WCET
was measuread separately. We also implemented the FFT using a
random gaussian distribution function that defines the number of
FFT’s computed by the FFT algorithm in each execution. Table
4 shows the characteristics of the applications used. The worst
case execution time of each instance of the applications are mea-
sured when the processor is running at maximum frequency. The
stardard deviation is also presented to show the variability on the
execution times for each application.

All algorithms used in the experiments shutdown the processor
as soon as it becomes idle. The processor is awakened when the
next external interrupt arrives and then continues executing. The
period of the fastest task is the same as the period of the external
interrupt to ensure that at awaken time the processor is not idle. A
limitation of the processor wake up strategy for our current testbed
requires us to make all tasks with periods multiple of the fastest
task. In this way whenever the processor is waken up there is use-
full work to be done and so we do not wake it up for nothing. If
we had a programmable interrupt generator this limitation would
not exist anymore. However, this is not a limitation of the software
architecture or the DPM algorithms.

Task Application WCET at Maximum Frequency Std Dev
(us) (us)

T1 MPEG2 (wg gdo 1.mpg) 30700 3100
T2 MPEG2 (wg cs 1.mpg) 26300 2100
T3 ADPCM 9300 3300
T4 FFT 15900 0
T5 FFT (gaussian dist.) 13600 800

Table 3. Applications used in the experiments

The shutdown mechanism is implemented using the operating
system idle thread. Whenever the system becomes idle, the idle
thread is scheduled. We take advantadge of this and run the code
to switch the processor to IDLE state as the first action of this task.
When the processor wakes up this task is resumed and the highest
rate task starts executing.

For the algorithms described earlier, the slowdown factors are

maintained internally to eCos in the form of tables. Each task type
is associated with a static factor, which is computed during system
initialization. The dynamic and adaptive factors are maintained
in a table of task instances. The task type table also maintains
a specified number (10 in our experiments) of execution times of
previous tasks executions. eCos kernel has full access to these
tables. PA-API layer accesses these tables by means of functions
provided by the PA-OSL layer.

With all these information available, whenever a context switch
occurs, the information about the preempted and scheduled tasks
are updated and the voltage and frequency of the scheduled task
are adjusted according to the static, dynamic and/or the adaptive
factors, depending on to the algorithm running at the moment.

Table 4 shows the tasksets used during the experiments. The
tasksets consist of combining the three applications mentioned ear-
lier using different data files and periods. The static slowdown fac-
tor is also presented for each taskset. The WCET is obviously the
same as the ones shown in Table 4. In the characteristics column
for each task the Period, the WCET and the Deadline are presented
respectively.

Taskset Characteristics (us) Static Slowdown Factor
A T1 = (26300, 40000, 40000) 0.9495

T3 = ( 9300, 80000, 80000) 0.9495
T4 = (15900, 120000, 120000) 0.9495

B T2 = (30700, 47000, 47000) 0.8979
T3 = ( 9300, 94000, 94000) 0.8979

T4 = (15900, 141000, 141000) 0.8979
C T1 = (30700, 45000, 45000) 0.9207

T3 = ( 9300, 90000, 90000) 0.9207
T5 = (13600, 135000, 135000) 0.9207

Table 4. Tasksets used in the experiments

Each taskset was executed using different power aware schedul-
ing algorithms. The energy and power consumption for the tasksets
are presented in tables 5, 6 and 7. We also present the ratio between
energy consumption when using each of the schemes compared to
energy consumption when using no scheme at all. For the power
consumption measurement we used a National Instruments data
acquisition board. We measured power consumed by the proces-
sor since we are providing separate power supply for it. For this
we used a shunt resistor with very small resistance (0.02 ohm) so
that we can measure the voltage drop across it. The voltage drop
and the voltage supply value give us the power consumption of the
processor. Our measurement setup is similar to the one described
in Farkas’ work [5] with the difference that we have to sample the
supply voltage as well since we are changing it dynamically. We
start doing measurements right before the tasks start execution and
we stop it when the MPEG application gets done decoding frames.
The DAQ board is triggered from software by pulling signals out
of the peripheral bus of the 80200 board so that we precisely know
where the measurements started and where they ended.



Scheme Processor
Energy Power Ratio Dead. miss
(Joules) (Watts)

Normal 39.085 0.779 1 0/0/0
Only Shutdown 31.504 0.628 0.80 0/0/0

Shut./Static 32.024 0.638 0.81 0/0/0
Shut./Static/Dyn. 28.496 0.568 0.72 1/1/2

Shut./Static/Dyn./Adapt. (0.95) 26.581 0.527 0.68 3/2/1
Shut./Static/Dyn./Adapt. (0.90) 26.258 0.522 0.67 3/2/1
Shut./Static/Dyn./Adapt. (0.85) 25.251 0.502 0.64 3/1/4
Shut./Static/Dyn./Adapt. (0.80) 24.835 0.494 0.63 3/2/51
Shut./Static/Dyn./Adapt. (0.75) 24.330 0.483 0.62 3/2/63

Table 5. Energy and Average Power Consumption for
Taskset A as shown in Table 4. The total number of exe-
cutions instances during the measurements for each task of
the taskset is 415/207/138.

Scheme Processor
Energy Avg. Power Ratio Dead. miss
(Joules) (Watts)

Normal 12.546 0.798 1 0/0/0
Only Shutdown 11.265 0.716 0.89 0/0/0

Shut./Static 9.819 0.624 0.78 1/0/1
Shut./Static/Dyn. 9.811 0.624 0.78 1/0/1

Shut./Static/Dyn./Adapt. (0.95) 9.795 0.623 0.78 1/0/1
Shut./Static/Dyn./Adapt. (0.90) 8.815 0.562 0.70 1/1/31
Shut./Static/Dyn./Adapt. (0.85) 8.828 0.562 0.70 1/1/31
Shut./Static/Dyn./Adapt. (0.80) 8.185 0.522 0.65 34/10/34
Shut./Static/Dyn./Adapt. (0.75) 8.211 0.525 0.65 34/10/34

Table 6. Energy and Average Power Consumption for
Taskset B as shown in Table 4. The total number of exe-
cutions instances during the measurements for each task of
the taskset is 130/65/43.

Scheme Processor
Energy Avg. Power Ratio Dead. miss
(Joules) (Watts)

Normal 13.080 0.838 1 0/0/0
Only Shutdown 12.342 0.772 0.94 0/0/0

Shut./Static 12.391 0.789 0.94 0/0/0
Shut./Static/Dyn. 10.892 0.693 0.83 0/1/18

Shut./Static/Dyn./Adapt. (0.95) 10.958 0.697 0.83 0/1/18
Shut./Static/Dyn./Adapt. (0.90) 9.875 0.627 0.75 1/8/32
Shut./Static/Dyn./Adapt. (0.85) 9.990 0.637 0.76 11/16/32
Shut./Static/Dyn./Adapt. (0.80) 9.889 0.631 0.75 11/16/32
Shut./Static/Dyn./Adapt. (0.75) 9.789 0.624 0.74 11/16/32

Table 7. Energy and Average Power Consumption for
Taskset C as shown in Table 4. The total number of exe-
cutions instances during the measurements for each task of
the taskset is 130/65/43.

In Tables 5, 6 and 7 the scheme column shows which algo-
rithm or combination of algorithms was used. For the adaptive al-
gorithm the number between parentheses represents the values of
M. The results presented are expected. Less energy is consumed as
long as more agressiveness is introduced to the system. Savings up
to 38% are obtained when using the adaptive scheme along with
the others. On the other hand, more deadlines are missed with
more agressiveness as well. We see that 45% of the deadlines are
missed in taskset A when M 0 75. This percentage gets even
worse for the other tasksets for less savings. Therefore a proper

tradeoff must be found for each different taskset in view of appli-
cation needs.

6.1. Battery driven example

To complement our goal of showing the utility of PASA we also
present a battery-driven application level strategy to enhance bat-
tery lifetime of a StrongARM based Compaq PDA called Ipaq.
Note that PASA also works on this platform with all the functions
presented in Table 1 and also running eCos. We present the results
of varying the parameters of a wavelet-based image compression
algorithm [17] in order to tradeoff image quality and energy con-
sumption. The first parameter used was BPP or bit per pixel. A
higher BPP results in a larger size of the compressed image and
higher energy consumption for a better image fidelity. The second
parameter used is the decomposition level (L). The larger the L
the better is the quality of the image and also the more energy it
consumes.

The image compression algorithm is ran in a continuous loop
with battery polling (using the functionpahal_battery_get_
info()) being performed every 10 seconds. On the top of this a
simple power tradeoff policy is added to adapt the quality of the
image against the battery voltage left. The net effect of this policy
is that whenever the battery drops 30mV the application adjusts
the image BPP by 0 5 starting at 1.5. Figure 4 shows the result.
At the beginning voltage drops at the speed of BPP 1 5. After
a 30mV the application changes BPP to 1 0 and the voltage drop
slows down. After a new 30mV drop the application changes BPP
to 1 0. For a cut-off of 4020mV the battery lasts for 340 seconds,
as opposed to 290 seconds, when adapting the application to the
voltage left in the battery. Therefore the battery life is extended by
18% with a slight degradation of image quality.
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Figure 4. Battery lifetime when adapting the image com-
pression application to the remaining battery left

7. CONCLUSIONS

In this paper, we have presented a sofware architecture, PASA, that
enables communication of energy related data among applications,



RTOS and hardware. In order to show its utility, PASA was incor-
porated into eCos operating system running on a complete variable
voltage system based on a XScale processor. We implemented four
different DVS algorithms, from a simple shutdown based scheme
to a dynamic predictive and adaptive DVS algorithm and collected
data to show the energy savings on a real system implemented us-
ing PASA. The results show a gain of up to 38% when compared
to the execution without any power management incorporated. We
also presented a battery-driven application adaptation scheme us-
ing PASA. For future we will add more power aware services to the
RTOS such as memory management and I/O and augment PASA
with functions to access these services. We are also investigating
ways through which the OS can direct application adaptation in
order to achieve a better tradeoff performance / power.

Figure 5. Picture of the hardware used. The Xscale board is
in the left upper side. The Maxim Board in the right upper
side. In the left lower side one can see a bread board with
some interconnections such as signals to trigger the DAQ
board. Finally at the right lower side one can see the FPGA
board, responsible for generating interrupts.
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